
Theory of the spin-nematic to spin-Peierls quantum phase transition in ultracold spin-1 atoms
in optical lattices

Christoph M. Puetter* and Michael J. Lawler
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

Hae-Young Kee†

Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7
and School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

�Received 11 July 2008; revised manuscript received 12 September 2008; published 24 October 2008�

We present a theory of the anisotropy-tuned quantum phase transition between spin-nematic and spin-Peierls
phases in S=1 systems with significant biquadratic exchange interactions. Based on quantum Monte Carlo
studies on finite-size systems, it has been proposed that this phase transition is second order with new decon-
fined fractional excitations that are absent in either of the two phases. The possibility of a weak first-order
transition, however, cannot be ruled out. To elucidate the nature of the transition, we construct a large-N
SO�3N� model for this phase transition and find in the N→� limit that the transition is generically of
first-order. Furthermore, we find a critical point in the one-dimensional �1D� limit, where two transition lines,
separating spin-nematic, ferromagnetic, and spin-Peierls phases, meet. Our study indicates that the spin-
nematic phase is absent in 1D, while its correlation length diverges at the critical point. Predictions for 23Na
atoms trapped in an optical lattice, where the nematic to spin-Peierls quantum phase transition naturally arises
are discussed.
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I. INTRODUCTION

Conventional Landau-Ginzburg theory describes continu-
ous phase transitions by fluctuations of an order parameter. A
nonzero value of the order parameter signals spontaneous
symmetry breaking and the presence of an ordered phase.
Moreover, if several distinct ordered ground states are pos-
sible, Landau-Ginzburg theory generically predicts that or-
dered phases with unrelated broken symmetries are separated
by either intervening phases or a first-order phase boundary.
In the simplest case, this is illustrated by the free energy for
two independent order parameters �1 and �2 as1
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Here, a direct second-order transition in the r-g parameter
space between phases with either nonzero �1 or �2 requires
fine tuning such that u1u2=u12

2 is satisfied.
Recently, a theory of critical phase transitions has been

proposed that reaches beyond the Landau-Ginzburg para-
digm and allows direct continuous transitions between dis-
tinct broken-symmetry phases.2,3 In this theory, the relevant
degrees of freedom are described in terms of fields that carry
fractional quantum numbers and become deconfined only at
the critical point. In particular, it was argued that a direct
continuous transition from a valence bond solid �VBS� to a
Néel phase2,3 or a spin-nematic phase4,5 falls into this class
of phase transitions. For this reason the search for such de-
confined critical phenomena �DCP� in simple model systems
has attracted much attention.

Several systems have been studied up to now. Based on
quantum Monte Carlo simulations on the two-dimensional

spin-1/2 Heisenberg model with an additional four-spin in-
teraction �“JQ model”�, the phase transition between a Néel-
ordered state and a VBS appears to be consistent with the
deconfined critical scenario.6,7 This, however, has been dis-
puted by other numerical studies8–10 that support a weakly
first-order transition. Another candidate system is the
Sp�4�-Heisenberg model on a square lattice, which describes
spin-3/2 cold atom systems and has also been conjectured to
harbor a direct second-order transition between a Néel and a
VBS state.11

The present approach focuses on the anisotropic bilinear
biquadratic spin-1 Heisenberg model �“JK model”� on a
square lattice

H = �
i

�JSi · Si+x + K�Si · Si+x�2� + ��
i

�JSi · Si+y

+ K�Si · Si+y�2� , �2�

where the exchange integrals for neighboring spins in y di-
rection are reduced by an anisotropy parameter � �i.e., J
→�J and K→�K on y bonds�. For �=0, this Hamiltonian
describes decoupled spin chains, while for �=1 the full
square lattice symmetry is recovered. The parameter range of
interest is specified by K�J�0, which is also thought to be
the natural range for 23Na atoms in an optical lattice.12,13 In
this range the quadratic term favors ferromagnetic order,
while the quartic term prefers the formation of singlet bonds.
This competition is solved in two dimensions �2D� ��=1� by
having a spin-nematic ground state �which breaks spin-
rotational symmetry but preserves time-reversal symmetry
�Si�=0� and in one dimension �1D� ��=0� by forming a
dimerized ground state �which breaks translational
invariance�.4,12–16 When the anisotropy parameter is continu-
ously changed between 1 and 0, quantum Monte Carlo stud-

PHYSICAL REVIEW B 78, 165121 �2008�

1098-0121/2008/78�16�/165121�6� ©2008 The American Physical Society165121-1

http://dx.doi.org/10.1103/PhysRevB.78.165121


ies by Harada et al.4 suggest that the system undergoes a
Landau-forbidden direct second-order transition between the
nematic and the dimer phases, which further motivated a
recently developed continuum theory for the nematic-dimer
phase transition based on DCP.5 However, because of signifi-
cant finite-size effects, they were unable to rule out a weak
first-order transition or the existence of two successive phase
transitions.4

In this paper, we examine the nematic-dimer phase tran-
sition in anisotropic spin-1 systems using two complemen-
tary approaches. The first approach is based on the bond
operator formalism introduced by Chubukov17 and is particu-
larly suited for studying the dimer phase as pairs of neigh-
boring spins are described by common bosonic bond opera-
tors. Taking the classical limit of this approach by neglecting
all quantum fluctuations, one can already obtain a good over-
view over the JK model. Complementary to the bond opera-
tor method, we then construct an SO�3N� model and study its
large-N limit �N=1 is the physical limit�. This approach ex-
plicitly takes the disordering effects of zero-point fluctua-
tions into account. For N→� we find that a first-order phase
boundary separates the spin nematic from gapped spin-liquid
phases except at special SU�3N� symmetric points, where the
transition becomes second order. In the 1D ��=0� limit, the
existence of the spin-nematic phase has been studied exten-
sively but remains elusive.17–20 In this limit, we find a critical
point at J=K�0 where spin-nematic, ferromagnetic, and
spin-Peierls correlation functions diverge. The spin-nematic
phase, however, does not exist in a finite parameter range
near J=K�0 at �=0. Finally, predictions for 23Na atoms in
an optical lattice, where the nematic to dimer quantum phase
transition naturally arises, are presented.

II. SPIN-1 BOND OPERATOR MODEL

To gain a simple understanding of the anisotropic JK
model of Eq. �2�, consider the classical limit of the bond
operator model following Chubukov.17 Grouping the Ns sites
of the square lattice into Ns /2 bonds in a columnar pattern,
we may reformulate the JK model in terms of bosonic op-
erators on these bonds that create and annihilate singlets
�00�= ŝ†�0�, triplets �1,mt�= t̂mt

† �0� �where mt=0, �1�, and
quintuplets �2,mq�= q̂mq

† �0� �where mq=0, �1, �2�. A con-
straint of one boson per site is then necessary to stay within
the physical Hilbert space. Allowing the bosons to com-
pletely condense �as in Bogoliubov theory� then produces a
simple phase diagram based on the energy of different pos-
sible condensates.

To carry out such program, we must first reconstruct the
spin Hamiltonian of Eq. �2� in terms of the above-introduced
bosons. On a given bond �= �i , i+ x̂�, it is easier to work with

the generators L��=S� i+S� i+x̂ and M� �=S� i−S� i+x̂ than with the
spin operators directly. Direct evaluation of the matrix ele-
ments of these operators in the total spin basis of bond � then
tells us how to represent them in terms of singlet, triplet, and
quintuplet operators. While a little tedious, the net result is
�dropping the bond labeling ��

L̂z = �
mt

mttmt

† tmt
+ �

mq

mqqmq

† qmq
, �3�

L̂+ = 	2�t1
†t0 + t0

†t−1� + 2�q2
†q1 + q−1

† q−2� + 	6�q1
†q0 + q0

†q−1� ,

�4�

L̂− = 	2�t0
†t1 + t−1

† t0� + 2�q1
†q2 + q−2

† q−1� + 	6�q0
†q1 + q−1

† q0� ,

�5�

M̂z = 	8
3 �t0

†s + s†t0� + 	4
3 �q0

†t0 + t0
†q0� + q1

†t1 + t0
†q1 + q−1

† t−1

+ t−1
† q−1, �6�

M̂+ = −
4
	3

�t1
†s − s†t−1� − 2�q2

†t1 − t−1
† q−2� − 	2�q1

†t0 − t0
†q−1�

−	2

3
�q0

†t−1 − t1
†q0� , �7�

M̂− = −
4
	3

�t1
†s − s†t−1� − 2�q2

†t1 − t−1
† q−2� − 	2�q1

†t0 − t0
†q−1�

−	2

3
�q0

†t−1 − t1
†q0� . �8�

To compute the condensate energies for various phases, it
is then useful to group the bosonic operators into a single

vector �� = �s , t1 , t0 , t−1 ,q2 , . . . ,q−2� and to express the above

operators in the compact form L̂z=��
†L�,	

z �	, etc. Substitut-
ing these expressions into the Hamiltonian then leaves us
with the generic form

H = �
�

h�
�1���,�

† ��,� + �
�����

h�,	,
,�
�2� ��,�����,�

† ���,	
† ���,
��,�,

�9�

where h�1� and h�2� depend on J /K. That this Hamiltonian
consists of only one-body and two-body terms results from
the one boson per bond constraint. Assuming the bosons con-
dense ��,�= ���,��+���,�, we then extract the leading contri-
bution to the condensate energy by expanding the ground-
state energy to zeroth order in powers of ���,�.

Four phases are of particular interest: a ferromagnetic
phase with all spins pointing up, a dimerized spin-Peierls
phase with a singlet on each bond, a “spin-nematic” phase in
which each site is in the state �1,0�, and an antiferromagnetic
phase with �1,1� ��1,−1�� on the A �B� sublattice. The
bosonic condensates for these idealized states are: �q2�=1 in
the ferromagnetic phase; �s�=1 in the dimer phase; �q0�
=	2 /3 and �s�=1 /	3 in the spin-nematic phase; and �s�
=1 /	3, �t0�= �−1�y /	2, and �q0�=1 /	6 in the antiferromag-
netic phase �the sign here alternates along a column in the
columnar dimer pattern�.

Using the above condensates as a guide, we construct a
simple phase diagram by minimizing the condensate energy
as a function of �s�, �tmt

�, and �qmq
� on at most two indepen-

dent neighboring bonds �that is, we explore an 18-
variational-parameter space�. This approach follows that of
Ref. 17 in essence and can be thought of as a simple two-site
clustering method. The resulting phase diagram is depicted
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in Fig. 1. All phases except the ferromagnetic phase have a
finite dimerization due to the explicit translational symmetry
breaking of this approach.

It is worth noting the finite existence of a spin-nematic
phase in the one-dimensional �=0 limit as shown in Fig. 1.
This phase is not expected to survive in the presence of
quantum fluctuations �finite ���,�� as pointed out by
Chubukov.17 However, the resulting phase diagram after
these effects are included is not clear from this approach. The
absence or presence of a �gapped� spin nematic in the 1D
limit has been the focus of extensive numerical studies based
on density matrix renormalization group , exact diagonaliza-
tion, quantum state transfer, etc.14,19–22 This issue still re-
mains to be settled as diverging correlation lengths near the
ferromagnetic phase limit numerical approaches. We will
show below that in the large-N limit of the JK model the
spin-nematic phase does not occupy a finite parameter region
near the critical point J /K=1 for �=0, while, approaching
the critical point, spin-nematic correlations certainly diverge.
This suggests that the one-dimensional spin-nematic phase
vanishes even for N=1, although 1 /N fluctuations may
qualitatively change the universality class of the phase tran-
sition from that of the large-N limit.

III. SPIN-1 SCHWINGER BOSON MODEL

In contrast to the bond operator approach, large-N meth-
ods include the disordering effects of quantum fluctuations.
For the present system, one therefore might expect that fluc-
tuations will help restore the translational invariance in the
dimerized nematic phase and affect the nature and the loca-
tion of the phase boundary between the nematic and the
dimer phases. Embarking on the large-N route, we introduce
bosonic SU�3� spinors ai,���=1,2 ,3� to rewrite the spin op-
erators on each site i as23

Si,� = − i��	
ai,	
† ai,
. �10�

In this representation, ai,�
† creates a particle in a state whose

spin component in the � direction is zero; that is, for a given
quantization axis, we define ai,1

† �0�= ��1,−1�i− �1,1�i� /	2,
ai,2

† �0�=−i��1,−1�i+ �1,1�i� /	2, and ai,3
† �0�= �1,0�i. Imposing

single occupancy on average on each site via a Lagrange
multiplier , one finds for the anisotropic JK model ��x
=1, �y =��

H = �
i

�=x,y

����− J + K�ai,�
† ai+�,�

† ai,	ai+�,	 + Jai,�
† ai+�,�ai,	

† ai+�,	�

− �
i

�ai,�
† ai,� − 1� , �11�

where the summation over the spinor components is implied
and the exchange integrals are commonly parametrized by an
angle �, i.e., J=cos��� and K=sin���. The first term in this
Hamiltonian possesses uniform SU�3� symmetry, while the
second term has staggered SU�3� symmetry on a bipartite
lattice. As a result, global SU�3� symmetry is found for spe-
cial values of J /K, namely, for �=−3� /4,−� /2,� /4,� /2.24

The order parameter of a spin nematic is a symmetric
traceless rank-2 tensor constructed from the spins; i.e.,

Q�	�i� =
Si,�Si,	 + Si,	Si,�

2
−

2

3
��	. �12�

This tensor can be expressed in terms of the triplons ai,�,
which when condensed, �ai,���0, describe long-range order.
Up to an SU�2� rotation, one then finds that condensation of
one of the spinor components �ai,���x� corresponds to nem-
atic order and condensation of two components �ai,���x�

and �ai,	��x	���	�, where x�
�x	 is purely complex, indi-

cates ferromagnetic order, while additionally staggered ex-
pectation values with �ai,��	���x��	� on one sublattice �i�A�
and �ai,��	���x��	�

� on the other �i�B� are associated with
antiferromagnetic order.

Now, consider generalizing to a large-N SO�3N� model
�with SU�3N� symmetry at �=−3� /4,−� /2, etc.� and ex-
panding in powers of 1 /N. To leading order, we obtain a
mean-field theory with self-consistent equations

�� =
 1

N
�

�=1. . .3N

ai,�
† ai+�,�� �13�

�� =
 1

N
�

�=1. . .3N

ai,�
† ai+�,�

† � , �14�

where �=x or y. These fields describe short-range correla-
tions and we choose them to be real to ensure an expected
time-reversal invariance in the ground state. In addition, we
restrict the Hilbert space to the SU�3N� representation given
by the Young tableau of N columns and 1 row by imposing
the constraint ��ai,�

† ai,�=N �see Ref. 25�. For the following
analysis we also allow for the uniform condensation of one
of the boson species ai,1=	Nx to study the nematic-dimer
phase transition. The quantity �x�2 then describes the nematic
“superfluid” fraction.

Phase diagram

Diagonalizing and minimizing the free energy, we obtain
the phase diagram for the JK model in the range −0.75�
���−0.5� as shown in Fig. 2�a�. For sufficiently large �
the ground state is always a spin nematic. However, as one
tunes � toward smaller values the nematic gives way to dis-
ordered spin-liquid phases via a first-order transition except
at the tricritical points at �=−0.5� and −0.75�, where the
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FIG. 1. �Color online� Classical phase diagram. All phases are
described by a finite condensate of bosonic bond operators follow-
ing Chubukov �Ref. 17�. Note the existence of a spin-nematic phase
in the one-dimensional ��=0� limit.
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transition becomes a continuous one. This behavior is cor-
roborated by the energy gap along the phase boundary �Fig.
2�b��. The gap vanishes as one approaches the points with
enlarged SU�3� symmetry at either end of the nematic-
disorder phase boundary at �=−0.75� and −0.5�. In one
dimension �see inset in Fig. 2�b��, the behavior of the gap
near �=−0.75� can be described by

� = b�	�/� + 0.75 exp�−
m

	�/� + 0.75
 , �15�

where b� and m are positive constants. It is interesting to
note that this form is reminiscent of the Berezinski-
Kosterlitz-Thouless-type transition in the �1+1�-dimensional
sine-Gordon model.26 Equation �15� can be obtained from
the constraint equation ��−1�kx,�akx,�

† akx,��=N by consider-
ing the most singular contribution in the kx=0 and �=
−0.75� limit and by exploiting the fact that the fields ap-
proach a common value �x=�x=1 /3 near �=−0.75�. Here,
� denotes the length of the spin chain.

Our results also show no indication of a gapped nematic
phase near the ferromagnetic phase in the one-dimensional
regime as was proposed by Chubukov. In fact, it is always
possible to satisfy the occupancy constraint without a nem-
atic condensate in one dimension. However, at the critical
point at �=−0.75� and �=0, the nematic phase merges from
the finite � regime, as shown in Fig. 2, so that the nematic
correlation function diverges at this point.

Inside the disordered regime we identify three different
spin-liquid phases �see Fig. 2�a��: a one-dimensional Z2 spin
liquid ��x ,�x�0,�y =�y =0�, a one-dimensional U�1� spin
liquid ��x�0,�x=�y =�y =0�, and a two-dimensional U�1�
spin liquid ��x ,�y �0,�x=�y =0�. All three phases are sepa-
rated from each other by second-order phase boundaries that
are located at �c�−0.551� and �c�0.28, respectively. The
decoupling of the spin chains below �c is likely to be due to
the mean-field scheme, which overstates the anisotropy in
the quasi-one-dimensional limit. Moreover, due to the one-
dimensional nature, we expect only a weak � dependence of

the phase boundary between the Z2 and the one-dimensional
U�1� phases, which could not be resolved. The phase bound-
ary between the one-dimensional and the two-dimensional
U�1� spin liquids at �c also does not exhibit any dependence
on the JK angle �. Detailed results along two directions
in the phase diagram are shown in Fig. 3. Last, it is
interesting to note that the “unconventional” transition point
��=−0.55�� examined previously in the QMC studies4 lies
in very close proximity to the Z2-U�1� phase boundary.

Going beyond mean-field level, saddle-point fluctuations
are not likely to change the nature of the first-order phase
boundary. We expect, on the other hand, that Berry phase
effects will lead to spontaneous dimerization throughout the
�y =�y =0 disordered region, which lies beyond mean-field
level. This situation is similar to SU�N� antiferromagnets,
where Berry phase effects arise from nontrivial U�1� gauge-
field fluctuations and induce dimer ordering in 1D and
2D.25,27 In particular, following such arguments for SU�3�
point �J=0� in the JK model, we expect a columnar dimer
ordering for ���X �see Fig. 2�a��. We also expect that the
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FIG. 2. �Color online� �a� Phase diagram of the anisotropic bilinear biquadratic spin-1 Heisenberg model in the regime −0.75����
−0.5� �J�K�0� based on a Schwinger boson mean-field approach. The solid line represents a first-order phase boundary except at �=
−0.5�, while the dashed lines represent second-order phase boundaries. The coordinates of the tricritical point X separating the nematic, the
Néel ���−0.5��, and the disordered phases are �X=−0.5� and �X�0.323. �b� Energy gap � �in units of 1� along the spin-nematic–disorder
phase boundary, which vanishes at �=−0.5� and −0.75�. The inset shows the energy gap for a one-dimensional ��=0� spin chain of various
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one-dimensional Z2 spin-liquid phase with �x ,�x�0 is un-
stable toward dimer ordering, which can be understood via a
mapping to the odd Ising gauge theory in 1D.28 Note that a
two-dimensional Z2 spin-liquid phase is absent on mean field
level even at finite �. It is possible that small modifications
to this model may reveal a two-dimensional Z2 spin liquid
that, depending on the vison fugacity, may or may not be
stable toward dimer ordering.29 This is beyond the present
study and will be addressed in the near future.

IV. APPLICATION TO OPTICAL LATTICES

Spin systems with a large biquadratic contribution are
rarely found in solid-state systems. However, models with
higher-order spin interactions can almost perfectly be real-
ized with ultracold spinor atoms in optical lattices. More-
over, anisotropy-tuned phase transitions between different
spin states can easily be induced by changing the optical
lattice potential in a particular direction, hence favoring or
disfavoring exchange processes between spins along this di-
rection. The spin-nematic–dimer transition also conserves
magnetization, which is a fundamental constraint on optical
lattice experiments.

Considering the lower S=1 hyperfine energy manifold of
23Na atoms, a large biquadratic spin interaction naturally
arises in an optical square lattice with a single average occu-
pancy per site.12,13 This follows from the two-dimensional
spin-1 Bose-Hubbard model

HBH = − t �
�i,j�,�

�bi,�
† bj,� + bj,�

† bi,�� +
U0

2 �
i

ni�ni − 1�

+
U2

2 �
i

�Si
2 − 2ni� − �

i

ni, �16�

where bi,�
† creates a boson on site i with spin �=0, �1, ni

=��bi,�
† bi,� is the number operator, and Si denotes the total

spin on site i. The spin-dependent potential U2 originates
from the difference in the scattering lengths for the two pos-
sible scattering spin channels S=0 and 2 for spin-1 atoms. To
leading order in t /U0, the effective spin model then results in
Eq. �2� �with �=1�, where the exchange integrals are deter-
mined by J=−2t2 / �U0+U2� and K=−2t2 / �3�U0+U2��
−4t2 / �3�U0−2U2��. Typically, for 23Na atoms one has
U2 /U0�0.04, which translates to J /K�0.34 or, equiva-
lently, ��−0.604� in the effective spin model. In an aniso-
tropic lattice, the hopping amplitude t becomes directionally
dependent, giving rise to anisotropic J and K integrals.

How can one probe the nematic to dimer phase transition?
A common way of analyzing optical lattice experiments is to
release all atoms from the trap and to measure the column
density of the expanding cloud. Within this approach, a
straightforward way to observe a spin-nematic to dimer
phase transition12 is to apply a weak magnetic field �say
along the 3-axis� to align the nematic hard axis perpendicular
to the field prior to the release and to separate different spin
components in the expanding cloud spatially by applying a
gradient field after the release. A sudden change in the popu-
lation of the a3

† state when tuning � then signals the transition
to the dimerized VBS.

Besides this, the interference pattern and the spatial noise
correlations of the expanding cloud also provide information
about the quantum state in the lattice.30–33 For instance, in
the case of spin-1 atoms �with mass m�, the equal-time
density-density correlation function for the freely expanding
gas after long times takes the form34

G�r,r�� =
1

L2�
�,	

�n��r�n	�r��� � −
sin2�qxL/2�sin2�qyL/2�

L2W4 sin2�qx/2�sin2�qy/2�

+
1

L2W4�
i,j

eiq�Ri−Rj��SiS j + �SiS j�2� , �17�

where q=m�r−r�� /�t, L denotes the linear size of the square
lattice in units of the lattice parameter, and W is the width of
the expanding Wannier states originally centered at lattice
sites Ri. Here, we have omitted a delta term from normal
ordering and constants of order 1 /L2. The first term stems
from the unit occupancy constraint per site, while the second
term contains the SU�3� spin structure factor, which consti-
tutes the JK model exactly at the nematic-ferromagnetic
phase boundary �J=K�0⇔�=−0.75��. The signature of a
ferromagnetic condensate therefore is indistinguishable from
that of a spin-nematic one. Our interest, however, lies in the
nematic-dimer phase transition. To evaluate G�r ,r��, we as-
sume complete condensation in the � state ��nem�=�iai,�

† �0�
in the spin-nematic phase and obtain �SiS j + �SiS j�2�nem=2 for
all i , j. In the dimer phase one gets �SiS j + �SiS j�2�dimer=2 if
the spins on sites i and j form a singlet and 4/9 otherwise.
The correlation function then takes the form

G�r,r�� � −
�1 − c�sin2�qxL/2�sin2�qyL/2�

L2W4 sin2�qx/2�sin2�qy/2�

+
2 − c

W4 �cos�qx� + cos�qy�� �18�

with c=2 in the nematic and 4/9 in the dimer phase. By
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FIG. 4. �Color online� Second-order density correlation function
for the spin-nematic �blue dashed curves� and the dimer �red solid
curves� phases for different lattice sizes along the qy=0 direction
�q=m�r−r�� /�t�. The central peak heights are roughly given by
��1−c�L2 with c=2 in the spin nematic and 4/9 in the dimer phase.
Note the different x-axis scalings.
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measuring the density-density correlator, both phases can be
clearly distinguished as shown in Fig. 4. Assuming a lattice
spacing of 532 nm, a time of flight of 20 ms, and a detector
size of 5 m, the momentum resolution results in
�q / �� /a��0.015 sufficient to observe the peaks for an L
�100 lattice �FWHM / �� /a��0.02, where FWHM stands
for full width at half maximum�.

Last, a recent and interesting proposal for probing the spin
configuration in an optical lattice is based on polarization
spectroscopy.35,36 This kind of measurement leaves the lattice
intact as a signature of the spin state is imprinted in the
polarization of a probing light beam. By analyzing the noise
fluctuations in the polarization of the outgoing light, the
dimerized and the spin-nematic phase can be well discrimi-
nated.

V. CONCLUSION

In summary, we have considered the spin-nematic to
dimer phase transition in the anisotropic JK model using a
bond operator formalism and a large-N mean-field approach.
Our analysis generally suggests a first-order spin-nematic to
dimer transition but would not contradict the possibility of
deconfined criticality at J=0 ��=−0.5��, where the JK

model has an enlarged SU�3� symmetry. Our large-N analy-
sis reveals a critical point at J=K�0 ��=−0.75�� where
two phase-transition lines, separating the spin-liquid, spin-
nematic, and ferromagnetic phases, meet. Although the nem-
atic phase vanishes in 1D, the nematic correlation length
diverges at the critical point. We have also argued that the 1D
Z2 and the 1D and 2D U�1� spin liquids are unstable toward
dimer ordering while the stability of a 2D Z2 spin liquid
would depend on the vison fugacity. We do not find a 2D Z2
spin liquid at mean-field level but will address a route to
such a phase in the future. Finally, we have discussed various
ways of observing a spin-nematic to dimer phase transition
in optical lattices, where the lattice anisotropy can be tuned
through laser intensities. Such experiments eventually pro-
vide concrete ways of studying the phases and phase transi-
tions of the JK model.
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